Silver Schmidt Hammer
CN658 - CN659
Impact Test Equipment Ltd
www.impact-test.co.uk & www.impact-test.com
Impact Test Equipment Ltd.
Building 21 Stevenston Ind. Est.
Stevenston
Ayrshire
KA20 3LR

T: 01294 602626
F: 01294 461168

E: sales@impact-test.co.uk

Test Equipment Web Site
www.impact-test.co.uk

Test Sieves & Accessories Web Site
www.impact-test.com
Table of Contents

1 Safety 5
1.1 General information 5
1.2 Liability 5
1.3 Safety Instructions 5
1.3.1 General information 5
1.4 Standards and Regulations Applied 6

2 Product description 7
2.1 What is new in the SilverSchmidt, compared to the Classic Schmidt Hammer? 7
2.2 Product family 9

3 Components of the SilverSchmidt 10

4 The Display Window 12

5 Operation Modes of the SilverSchmidt 13
5.1 Checking the current Settings 13
5.2 Single Impact Mode - Performing a RESET 14

6 The User-Interface of the SilverSchmidt 16
6.1 Philosophy of the User-Interface 16
6.2. Accessing the SELECTOR 17
6.3 Working with the Selector 17
6.4 Scrolling Between Icons and Selecting Menus 18

7 Setting the Parameters One by One 19
7.1 Select “UNITS” 19
7.2 Working with “PRESETS” 20
7.2.1 Recalling PRESETS 20
7.2.2 Programming / Customizing PRESETS 20
7.3 Select “STATISTICS” 21
7.3.1 Selecting an Averaging Mode 21
7.3.2 Setting the Number of Samples, “n-Select” 22
7.3.3 Measuring with the ASTM norm 23
7.4 Setting Carbonation Depth 24
7.5 Select CONVERSION Curves 24
7.5.1 Curve Selection 24
7.5.2 Conversion Curves for Type N 25
7.5.3 Conversion Curves for Type L 25
7.5.4 Notes to Conversion Curves 26
7.6 Select FORM FACTORS 26
8 Acquiring a Series of Measurements
8.1 Averaging and Converting to Compressive Strength
8.2 Acquiring the Data
8.3 Manual Cancellation of Outliers
8.4 Termination of the Series and Averaging
8.5 Exiting Averaging Mode
8.6 REVIEW Mode

9 Maintenance
9.1 Function Check
9.2 Cleaning and Maintenance
9.3 Hints on How to Obtain Consistent Results

10 Alerts and What to do
10.1 Charging the SilverSchmidt

11 Technical Data of the SilverSchmidt
11.1 Mechanical Data
11.2 Electrical Data
11.3 Useful Ranges

12 Units, Components and Accessories
12.1 Units
12.2 Components
12.3 Standard Accessories
12.4 Accessories (Optional)

13 Appendixes
A Operating Modes
B Menu Structure
C Considering Carbonation Depth
D Conversion Curves

Quick Start Guide at the back of this manual
1 Safety

1.1 General information
The concrete test hammer SilverSchmidt is designed according to state-of-the-art technology and recognized safety regulations. Please read through these operating instructions carefully before initial start-up. They contain important information about safety, use and maintenance of the concrete test hammer.

1.2 Liability
Our "General Terms and Conditions of Sale and Delivery" apply in all cases. Warranty and liability claims arising from personal injury and damage to property cannot be upheld if they are due to one or more of the following causes:

○ Failure to use the concrete test hammer in accordance with its designated use.
○ Incorrect performance check, operation and maintenance of the concrete test hammer.
○ Failure to adhere to the sections of the operating instructions dealing with the performance check, operation and maintenance of the concrete test hammer.
○ Unauthorized structural modifications to the concrete test hammer.
○ Serious damage resulting from the effects of foreign bodies, accidents, vandalism and force majeure.

All information contained in this documentation is presented in good faith and believed to be correct. The manufacturer makes no warranties and excludes all liability as to the completeness and/or accuracy of the information. For the use and application of any product manufactured and/or sold by Impact explicit reference is made to the particular applicable operating instructions.

1.3 Safety Instructions

1.3.1 General information
○ Perform the prescribed maintenance work on schedule.
○ Carry out a performance check once the maintenance work has been completed.
○ Handle and dispose of lubricants and cleaning agents responsibly.

1.3.2 Unauthorized operators
The concrete test hammer is not allowed to be operated by children or anyone under the influence of alcohol, drugs or pharmaceutical preparations. Anyone who is not familiar with the operating instructions must be supervised when using the concrete test hammer.

1.3.3 Labelling in the manual
The following icons are used in conjunction with all important safety notes in these operating instructions.

⚠️ Danger! This note indicates a risk of serious or fatal injury in the event that certain rules of behaviour are disregarded

⚠️ Warning! This note warns you about the risk of material damage, financial loss and legal penalties (e.g. loss of warranty rights, liability cases, etc.)
1.4 Standards and Regulations Applied

- ISO/DIS 8045 International
- EN 12 504-2 Europe
- ENV 20 Europe
- BS 1881, part 202 Great Britain
- DIN 1048, part 2 Germany
- ASTM C 805 USA
- ASTM D 5873 (Rock) USA
- NFP 18-417 France
- B 15-22 5 Belgium
- JGJ/ T 23-2001 China
- JJG 817-1993 China
2 Product description

2.1 What is new in the SilverSchmidt, compared to the Classic Schmidt Hammer?

The SilverSchmidt is an integrated electronic Schmidt hammer, featuring greater ease of use and extended range. The readings are displayed and can be automatically converted into compressive strength, considering the user settings like different conversion curves, corrections for carbonation and specimen size and shape (form factor).

Robust Measurement System – The New "Q"-value
The SilverSchmidt measures the true rebound coefficient, the so-called “Q”-value. It represents the physical rebound coefficient:

\[Q = 100 \times \frac{\text{Energy}_{\text{restored}}}{\text{Energy}_{\text{input}}} \]

The SilverSchmidt measures the velocity of impact and of rebound, immediately before and after the impact, computing the fraction of energy restored by the specimen under test. The “Q”-value is virtually free of error sources inherent in traditional concrete test hammers measuring the “R”-value, which is the mechanical travel of the mallet on rebound. The “Q”-value is therefore less dependent on friction on the guide rod, the influence of gravity during the travel of the drag pointer and the relative velocity between unit and specimen. The “Q”-value, respectively the velocity of impact and rebound, is measured optically. This makes the use of a drag pointer, which is affected by friction, redundant.

The “Q”-scale differs slightly from the traditional “R” scale. However the SilverSchmidt has a conversion implemented that allows the user to work with the traditional “R”-value.

The “Q”-value allows for an extended conversion range, at both ends of the scale. At the high end, the strength vs. “R”-value function gets very steep. The mechanical hammer has difficulties differentiating at “R”-values above 60. At the low end of the scale, friction and gravity often approach the same value as the restored energy, therefore errors can be larger.

Angle Independent Operation
The “Q”-value needs no correction for the impact direction. There is no need to refer to impact direction conversion curves as required with all other concrete test hammers.
Extended Conversion Range
The “Q”-value allows an extended conversion range, at both ends of the scale. Curves describing modern concrete mixtures are stored in the unit.

Compliance with Industry Standards
Data collection and statistical evaluation are user-selectable in accordance with major industrial standards. All measurements are stored in memory and can be reviewed.

All Readings Qualified
Actual impact energy is measured in Nm, i.e. every reading is qualified whether in range or not. The impact energy is monitored and a warning is displayed when it is out of range.

User Interface
The SilverSchmidt features an icon based, language independent user interface that allows you to control the unit by a single button and by tilting it sideways to scroll between the menu items.

Ease of Operation
The result of the measurement is directly displayed on the LCD screen in N/mm², kg/cm², “R”, “Q” or psi. Custom presets of test parameters for various testing scenarios can be stored and later recalled.

Low Power Consumption
The SilverSchmidt features automatic wake-up and sleep modes keeping its power consumption to a minimum. The lithium polymer accumulator in the unit will last for many years without replacement. A single charge will last for over 1’000 impacts. Charging is accomplished via a standard USB cable.

Extended Lifetime
The unit is tightly sealed all-around to ensure an extended lifetime. All mechanical parts are coated or tempered to high standards.

⚠️ **Caution!** Do not open the unit, be careful when changing the plunger and do not lubricate.
2.2 Product family

There are two major versions of SilverSchmidt B and U. The "B" version is the basic version and the "U" version has extended memory and the capability to communicate with a PC via the USB port. It is also supplied with the Hammerlink software which allows further processing of the collected data. Each type B and U is available with the standard impact energy and a low impact energy. This gives the four models currently available.

BN Basic version with normal impact energy.
UN PC communication version with normal impact energy.
BL Basic version with low impact energy.
UL PC communication version with low impact energy.

The features described in this manual apply to both the B and U types. The additional PC communication features possible with the U version are described in the separate Hammerlink Operating Instruction Manual.
3 Components of the SilverSchmidt

Full electronic module

Housing

Full mechanical module type N

Figure 3-1.1 Major components of the SilverSchmidt
Parts

1. SELECT button
2. Cover for USB port
3. LCD display
4. Plunger complete
5. Guide sleeve complete
6. Housing
7. Electronic module complete
8. Mechanical module complete
9. Hammer guide bar and guide disc
10. Impact spring
11. Loading spring holder complete
12. Loading spring
13. Hammer mass

Figure 3-1.2 Complete part list of the SilverSchmidt

Figure 3-2 Accessible parts of the SilverSchmidt

1. SELECT button
2. USB port
3. LCD display
4. Plunger
5. Guide sleeve (cap)
6. Housing
4 The Display Window

A typical display after an impact shows:

- The actual “Q”-value with a two and a half digit number
- A pseudo-analog scale mimicking the mechanical drag pointer.
- A counter either displaying the last two digits of the 4 digit totalizer or the actual number of valid impacts in a series of measurements.

Throughout this manual you will come across all kinds of display contents. You will learn the graphical user interface that allows you to control the SilverSchmidt unit in a quick and intuitive way.
5 Operation Modes of the SilverSchmidt

The SilverSchmidt unit distinguishes three modes of operation:

Impact mode: Used for acquiring a single rebound value or a series of consecutive rebound values. There are two impact modes.
- Single impact
- Measurement series

Set-up mode: Used to enter settings to convert a series of consecutive rebound values to compressive strength. It can also be used to save the current settings as user definable presets.

Review mode: Used to recall the last 20 results of either single impacts or measurement series.

The structure of the operation modes is shown in Appendix A and in the Quick Reference Guide.

5.1 Checking the current Settings

The current settings will be displayed when you apply the end of the plunger against the concrete (or any firm) surface and slightly push (TIP). You can review the settings at any time – they are displayed momentarily and will not affect any current testing or settings. The display format is shown in Figure 5-1.

![Figure 5-1 Display showing all 6 settings](image)

In chapter 7 you will learn how to program the settings of your SilverSchmidt to give you a read-out in the way that best suits your application.

5.2 Single Impact Mode - Performing a RESET

This chapter addresses the use of the SilverSchmidt as a classical hammer, to provide a single rebound value for a quick estimate. More advanced features are described in chapter 7.

The SilverSchmidt can be reset by performing an impact while the SELECT button is pressed. The display is set to “Q” and all conversion parameters are reset. To indicate the RESET status, the display will look as shown in Figure 5-2: with the serial number of the unit, the “Q”-value and the last two digits of the totalizer.

![Figure 5-2 Display after RESET](image)
![Figure 5-3 SETTINGS after RESET](image)

Now check the settings again by depressing the plunger against any surface. The default settings as illustrated in Figure 5-3 will appear on your display. The SilverSchmidt is now programmed to work in the “Single Impact” mode.

The following parameters have been set: Unit (Q), Preset (... none), Statistics Mode (... single measurement), Carbonation (0.0 no carbonation), Conversion Curve (pqb, Proceq-B-Curve), form Factor (1.0, for Curve ISO 150 mm). The totalizer keeps track of all impacts and is never zeroed.

The RESET procedure described here need only be done once (or in the rare case of a system error). As long as your SilverSchmidt displays a "Q", a value and two dots (meaning individual impacts) as well as the two digit counter you are in “Single Impact” mode.

This display format is maintained for 5 impacts following a RESET. This feature will let you verify the number of impacts your SilverSchmidt has done along with the “Q”-value. After 5 impacts following RESET the display will change to the format which includes a pseudo analog scale for the “Q”-value unless it exceeds 70.
The SilverSchmidt has a resolution of 0.5 on individual “Q” readings. The totalizer advances in increments of one and is displayed in full (4 digits).

A typical result taken in “Single Impact” mode looks like that illustrated in Figure 5-5: (Please note that the scale above the number is animated, indicating that there are still some components moving internally).

If registering “Q”-values is all that is required, please proceed to chapter 9. However, if the advanced features are of interest, please continue reading.

Note! Performing a reset with the U-version will display the USB symbol during the boot-up.
6 The User-Interface of the SilverSchmidt

6.1 Philosophy of the User-Interface
The user-interface of the SilverSchmidt is based on a straightforward menu structure. Each menu item has its own descriptive ICON making it language independent.

The complete menu structure can be found in the appendix B.
There are five ways in which the user can interact with the SilverSchmidt

○ TILT – Tilting the device means that you raise the left side (plunger side) of the device to scroll to the icons to the left of the “centered” icon or you raise the right side of the device (SELECTOR button side) to scroll to the icons to the right of the “centered” icon.
○ ROLL – Rolling the device means that the device remains in the horizontal position, but the display is rolled away from you or towards you.
○ SELECT - Press the SELECT button.
○ TIP – Depress the plunger a short distance, but not enough to trigger it.
○ IMPACT – Depress the plunger until it triggers.

These simple actions are all that is required to navigate around the menu, set-up the SilverSchmidt, perform measurements and review results and settings. How this is done precisely is described in the following chapters.

Click the SELECT button, and a new window will appear on the display. Now tilt the unit sideways (or in certain cases roll it towards and away from you), and the display will respond either by moving the list of icons or by a scrolling bar.

As the symbols lock into the center position their shade reverts to indicate their selection.

Center the desired icon – or move the scroll bar to the value of choice, click the SELECT button for a second time, and the desired menu or parameter will be selected.
In the next menu continue with your selection and choose it by clicking SELECT.

• Doing an impact will always take precedence, i.e. the SilverSchmidt will acquire the next rebound value.
• Once you have made your selection you will return to the SELECTOR.
6.2. Accessing the SELECTOR

- From Single impact mode press the SELECT button to access the SELECTOR.
- From measurement series mode press the SELECT button. This will take you to the STATISTICS Dialog menu. Scroll to the SELECTOR icon and press SELECT again (Figure 6-0).

![Figure 6-0 Selector icon](image)

- From review mode – Roll the device away from you to scroll down to the selector icon and click SELECT to return to the SELECTOR.

If you have entered a menu inadvertently, the SilverSchmidt will automatically revert to the SELECTOR, after approximately 5 seconds if no further action is taken. The concept will be further explained in chapter 7 where you will be taken through the steps of selecting various parameters.

6.3 Working with the Selector

Apply the principle of the user-interface described above to configure the SilverSchmidt for an advanced measuring task (i.e. to give you a read-out in compressive strength, considering a set of parameters or to do a series of measurements with statistics):

![Figure 6-1 Controlling the SilverSchmidt with the single button interface with gloves](image)

- Hold the SilverSchmidt horizontally in front of you as shown in Figure 6-1.
- Enter Set-up mode by clicking the SELECT button.
- The SELECTOR will appear on the display (see Figure 6-2). The portion of the list of icons visible at first is the central section of the complete list as shown in Figure 6-4. Scroll and click SELECT on the desired icon as described in detail below.
Please thoroughly familiarize yourself with this process (as this user interface principle is used throughout the operation of this instrument).

In the left window the REVIEW icon is centered – the right window illustrates the transition to the STATISTICS icon.

The left group of icons (1 to 3) and the right group (5 to 7) refer to mathematical or physical properties, the center icon (4) allows a review of the last 20 results.

6.4 Scrolling Between Icons and Selecting Menus

When you first click the SELECT button, the display will look as shown in Figure 6-2, i.e. with the “REVIEW” icon in the middle and cropped on either side. Tilt the unit to the left and the icons will scroll to the right (see note below). Through this mechanism you will be able to position the desired icon, e.g. “CARBONATION” to the center of the display. Click the SELECT button a second time and you enter the “CARBONATION” menu. In the same way you can select any of the other menus or parameters.

- Tilt to the left here means dropping the left side and raising the right side to move to the icons to the right of the centered position.
- When entering into any menu, the icon that is initially “centered” is always the last one that was selected.
7 Setting the Parameters One by One

We will now explain each icon and its associated menus from left to right. This sequence has been chosen for the sake of instruction - you can program the features according to your needs, in any order or you can bypass the sequence altogether by recalling one of the user-definable presets (see chapter 7.2)

7.1 Select “UNITS”

Your SilverSchmidt will convert from „Q“-values to compressive strength at the end of every measurement series if you select the appropriate unit (N/mm², kg/cm² or psi). If you do not specify the units after a RESET, the SilverSchmidt will automatically give you a reading in Q.

There is the possibility to work in “R” but it is more effective to switch to “Q”.

○ Access the SELECTOR (see chapter 6.2)
○ Scroll to the leftmost icon by tilting the unit to the right and letting the “UNITS” icon float to the center of the display (see Figure 7-1).
○ Click the SELECT button again to enter the “UNITS” menu.

Figure 7-1 SELECTOR with “UNIT” icon centered

Figure 7-2 Menu "UNIT" centered on N/mm²

The symbols in Figure 7-2 mean the following:

○ R Rebound value
○ Q “Q”-value
○ N/mm² N/mm² (Please note: N/mm² is the same as Mpa)
○ kg/cm²
○ psi (Please note: when psi is set as the unit then carbonation and form factor will be in inches.)

The square symbol stands for “area”.

Scroll to the desired unit (in the case shown in Figure 7-2 it is “N/mm²”) and click the SELECT button. The desired unit is stored and you are back in the SELECTOR.

Whenever you set a different unit this will take effect for the following samples only, the previous results, stored in the memory stack, are not affected by changing the units or any other change of settings.
7.2 Working with “PRESETS”

7.2.1 Recalling PRESETS

The “PRESETS” menu allows you to recall customized settings of all parameters, giving you a shortcut to your most frequently used configurations of the SilverSchmidt unit.

- Access the SELECTOR (see chapter 6.2)
- Scroll to the PRESET icon by tilting the unit to the right until it floats to the center of the display.
- Click SELECT button to enter the PRESETS menu.
- Scroll to the desired preset.
- Click SELECT a second time. The desired preset is loaded and you are back in the SELECTOR.

Remember you can verify your current settings at any time by depressing the plunger thereby recalling the SETTINGS display (e.g. see Figures 5-1 or 5-3).

F₀ Preset - Factory Preset (Read only):
This set of parameters reflects the standard of the territory you work in if it is known. In Europe it corresponds to the set called for by the European standard 12504/2 (median, minimum number of impacts = 9, 20% criteria) N/mm², Proceq-B curve adapted to “Q”-value, Cube 150 x 150 x 150mm, Carbonation acc. actual situation.

In the US it corresponds to ASTM C805.
If the local standard is not known then F₀ will be set to the European standard.

C₁, C₂, C₃: Customer Presets (can be customized)

If you proceed to change a parameter, you are not in the preset anymore. So if you often use the territory standard but with, for example, another number of impacts, choose F₀ change the number of impacts as explained in chapter 7.3.1 and save this in one of the presets C₁, C₂ or C₃.

7.2.2 Programming / Customizing PRESETS
The principle behind this option is very simple: Once you have put together a set of parameters that suit your task, assign them to a custom preset in C₁, C₂ or C₃ so they are memorized and can be recalled whenever needed. To save a set of parameters after you have already worked with them, the sequence for programming is as follows:

- Access the SELECTOR as above and scroll to center the presets icon.
○ Press the SELECT button for approximately two seconds to enter the “PRESETS” menu in the programming mode. This means you are writing data into the location of your choice, overwriting what was previously programmed. If this is not what you want to do, wait for five seconds without doing anything and you will return to the SELECTOR.

○ Scroll to desired preset location C1, C2 or C3, and click the SELECT button. For example in Figure 7-5 below C1 in the center of the display is the desired preset location.

 ❙ F₀ is a read only location and cannot be changed.

 ❙ There is no alert to confirm if you really want to overwrite the parameters previously stored in the preset locations.

Figure 7-5 PRESET menu: Writing the current settings into C1.

C1 is in the center of the display Locations C1 to C3 are inverted to alert you that you are in write mode.

7.3 Select “STATISTICS”

Figure 7-6 Selector with „STATISTICS“ icon centered

The “STATISTICS” sub menu is a little more involved than the previous ones, since it allows you to choose two sets of parameters. Unless you choose to work in Single impact mode or the ASTM mode, the menu consists of two layers.

7.3.1 Selecting an Averaging Mode
The first layer lets you choose the averaging mode. You can choose between five different averaging modes: The statistics menu will ask you for your choice with the following window. Center the desired icon and click the SELECT button.
1. Single measurement
2. Median (evaluation according the EN Norm)
3. Arithmetic mean
4. Arithmetic mean with automatic cancellation of outliers (see Figure 7-8)
5. Evaluation according to the ASTM norm

Figure 7-7 Averaging mode menu

<table>
<thead>
<tr>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
</tr>
</thead>
</table>

The median is intended as the center value of a sorted series. If the number of samples is even, the median is the average between the two center values. When in median mode the unit will automatically check the dispersion of the data. The result is flagged to be rejected when more than 20% (mathematically rounded down or up) of the values differ from the median by more then ±6.5 units (as mentioned in the standard EN 12504-2).

7.3.2 Setting the Number of Samples, “n-Select”

On the second layer you can now choose the number of measurements you want to make for one series, of course only if you have previously chosen median, arithmetic mean or arithmetic mean with outlier cancellation. If you selected the ASTM norm evaluation, the number of measurements is set automatically to 10.

If you select a number, the device will signal the end of the series at that point. If you select “n”, the unit waits for a termination (this allows you to do a series of any length up to 99 impacts). For example if you want to acquire a series of 15 impacts, select n=16 or higher and after the 15th value you terminate the series as explained in chapter 8.4. In case of the ASTM statistic method, you are not able to terminate the series until you have done 10 impacts. In the median mode you have to do at least 9 impacts before you can terminate the series.

Figure 7-8 Automatic cancellation

Figure 7-9 “Scroll bar n-select”: n=16

Figure 7-10 setting an arbitrary series
7.3.3 Measuring with the ASTM norm

If you choose the ASTM norm evaluation, at the end of your measurement series you will get the following screen.

![Figure 7-11 Summary screen one](image)

![Figure 7-12 Summary screen two](image)

If the norm cannot be fulfilled with the measurement series, the screens will look as follows:

![Figure 7-13 Summary screen one](image)

![Figure 7-14 Summary screen two](image)

Screen one indicates that more than 2 values (20% from 10 values) vary by more than is allowed from the arithmetic mean.

The second screen shows the calculated mean in Q, the standard deviation in Q and the corresponding PSI value.

The evaluation according the ASTM C805 norm:

First the arithmetic mean from all ten measurements will be calculated. Then each measurement is checked to see if it varies by more than $6R$-values (resp. $6.5Q$-values) from the arithmetic mean. From the remaining values the arithmetic mean is calculated again. If more than 20% were cancelled, the whole series is deemed invalid. This is indicated on the SilverSchmidt by the >20% symbol, but nevertheless the PSI value is calculated and displayed on the next screen.
7.4 Setting Carbonation Depth

The age of the concrete and the thickness of the carbonated surface can lead to significant over-estimations of the compressive strength. Two methods are in use to correct the “Q”-value (see Appendix C).

- Determine the depth of carbonation (in millimeters or inches) with an indicator kit.
- Access the SELECTOR (see chapter 6.2)
- Select the “CARBONATION” icon.
- Click the SELECT button.
- When entering the Carbonation menu the scroll bar will point to the last value set. (Scroll to the appropriate value (in increments of 0.5 mm, 2/100 in).
- Click SELECT again after positioning the scroll bar to the desired depth.

7.5 Select CONVERSION Curves

7.5.1 Curve Selection

To select any of the conversion curves (see Figure 7-17 and Figure 7-18 respectively):

- Access the SELECTOR (see chapter 6.2) and center the conversion icon.
- Click SELECT button to enter the CONVERSION menu.
- Scroll sideways by tilting unit and center your choice.
- Click the SELECT button.
- Click SELECT a second time when your choice appears in the center.

The SilverSchmidt comes programmed with a variety of conversion curves. This applies for the two types N and L.

All curves are only valid for Portland cement types of concrete. The curves with all the details are shown in Appendix D.
The new curves L, C and H (see below) are based on extensive tests performed by an independent institution.

For each type the classical curves Proceq B from the ORIGINAL SCHMIDT hammer are also adapted to the new “Q”-value.

7.5.2 Conversion Curves for Type N
The SilverSchmidt N is provided with four conversion curves (see Appendix D).

Proceq L
(only when measured with the mushroom plunger)
Range of compressive strength: **5 to 30 N/mm² (725 to 4'400 psi)**

Proceq B
Classical curve from ORIGINAL SCHMIDT adapted to “Q”-value
Range of compressive strength: **10 to 70 N/mm² (1'450 to 10’200 psi)**
This curve was established more than 50 years ago and shows rather conservative values.

Proceq C
Range of compressive strength: **10 to 110 N/mm² (1'450 to 16’000 psi)**
This curve is valid for wide range of Portland cement type of concrete including self compacting concrete.

Proceq H
Range of compressive strength: 70 to 170 N/mm² (10’200 to 24.650 psi)
This curve is valid for a wide range of Portland cement type of concrete including self compacting concrete.

7.5.3 Conversion Curves for Type L
The SilverSchmidt L is provided with two conversion curves (see Appendix D).

Proceq B
Classical curve from ORIGINAL SCHMIDT adapted to “Q”-value
Range of compressive strength: 18 to 70 N/mm² (2’600 to 10’200 psi)
This curve was established more than 50 years ago and shows rather conservative values.

Proceq C
Range of compressive strength: 8 to 110 N/mm² (1’160 to 16’000 psi)
This curve is valid for wide range of Portland cement type of concrete including self compacting concrete.
7.5.4 Notes to Conversion Curves

All conversion curves are referenced to a 150 x 150 x 150 mm cube. Therefore you must select the appropriate form factor (see chapter 7.6) when referring to other shapes of test specimens.

Warning! The conversion curves are established according to the best practices available. However, it is recognized that many parameters (concrete mixture, age of the concrete, carbonation depth, etc.) can strongly affect the conversion. In critical cases it is therefore necessary to:
- generate your own conversion curves
- verify the measurements by extracting a sample probe.

7.6 Select FORM FACTORS

By means of the form factor, it is possible to convert strength values for a particular specimen form to those of a different form/dimension. In countries where the 28 day strength is not determined on concrete cubes with 150 mm edge length, our table values have to be multiplied by this form factor in order to obtain comparable results. The same form factor would have to be applied when for instance, the test specification prescribes cubes with 150 mm edge length but the effective test in the compressive testing machine is carried out with different specimen forms.

The SilverSchmidt unit uses a 150 x 150 x 150 mm cube as standard reference to convert from the averaged “Q”-factor to compressive strength. Since, depending on your application you may make reference to different dimensions and geometry; a variety of shapes are selectable for your conversion.

To set a specific form factor proceed as follows (7-19, respectively Figure 7-20):
- Access the SELECTOR and center the “FORM FACTOR” icon.
- Click the SELECT button and scroll to the appropriate value. Seven values are offered. 1.0 (for cube 150x150x150 mm) is in the center initially. In addition, the form factor is displayed in numbers on the right.
- Click the SELECT button again when the desired factor is centered.
Drilled core Cube Cylinder

Ø 50 x 56 mm dia 2 x 2.2 in
Ø 100 x 100 mm dia 4 x 4 in
Ø 150 x 150 mm dia 6 x 6 in
Ø 200 x 200 mm dia 8 x 8 in

200 x 200 x 200 mm 8 x 8 x 8 in
100 x 100 x 100 mm 4 x 4 x 4 in
150 x 150 x 150 mm 6 x 6 x 6 in
300 x 300 x 300 mm 12 x 12 x 12 in

0,95 0,95 1,00 1,03 0,86
1,04 1,00 0,81 0,95

Figure 7-21 Form factors
8 Acquiring a Series of Measurements

8.1 Averaging and Converting to Compressive Strength
The SilverSchmidt will conveniently give you a conversion once you have programmed the various settings as described in the previous chapter.

Once the various parameters (unit / number and mode of samples to be averaged / carbonation depth / conversion curve / form factor) are set, the SilverSchmidt will keep them memorized until you make a change (even when the unit goes into sleep mode).

Work with presets as described in chapter 7.2. instead of setting the parameters before every task. In fact only parameters you want to change must be set prior to an individual measuring task.

8.2 Acquiring the Data
As with the Single impact mode, press the SilverSchmidt against the surface to be tested (TIP). When you depress on the plunger the settings will temporarily be displayed (Figure 5-1). Apply pressure until the impact is released and your first measurement will be recorded (Figure 8-1).

Individual impacts will be registered as "Q"-values.

The conversion to compressive strength is done only after completion of the series.

Figure 8-1 Acquiring the first sample of a series

Figure 8-2 Acquiring the second sample of a series

The letter “n” indicates that the counter is keeping track of the number of samples acquired in the current series.
8.3 Manual Cancellation of Outliers

Individual readings that are obvious outliers, as the might occur by hitting a soft spot, a hole or a pebble can be eliminated.

Proceed at a pace that allows you to monitor the display while measuring. Please note that only the most recent reading can be canceled.

If the most recent reading (Figure 8-3) is clearly out of range:

- Click SELECT to enter to the “STATISTICS DIALOG WINDOW” (Figure 8-4.)
- It appears with the Sum symbol centered; Tilt the unit to center the “TRASH” icon (Figure 8-5).
- Click SELECT to cancel the last reading. The display responds by wiping out the reading (Figure 8-6) indicating that the cancellation has occurred; at the same time the counter has been decreased by one.

![Figure 8-3 Outlier - to be cancelled manually](image)

![Figure 8-4 Stat dialog Box on “Average” (Sum) symbol](image)

![Figure 8-5 Stat dialog Box on “Cancel” (trash can) symbol](image)

![Figure 8-6 Display after cancellation of outlier](image)
After having cancelled a result, proceed normally with your impacts until you have acquired the specified number of valid samples. If you wish to shorten the length of your series you can click on “Sum” after entering the Statistics dialog box at any time – this allows you to make a series of any arbitrary length.

The SilverSchmidt will keep track of the number of valid impacts and it will alert you when you are ready to average and convert. For example, if your test series required a series of 20 impacts; having reached this number the “n” symbol will be inverted suggesting that the buffer is full (Figure 8-7).

- If you make additional impacts the unit will not register them.
- The impact totalizer will register all impacts since its scope is to give you information about the wear of the unit.

![Figure 8-7 Display of last value in series of 20](image1)
![Figure 8-8 Stat dialog Box on “Average” (Sum) symbol](image2)

8.4 Termination of the Series and Averaging

This section describes how to terminate a measurement series and how the results are represented.

- Click **SELECT** to enter to the “STATISTICS DIALOG WINDOW” (Figure 8-8)
- Click on the “Sum” symbol (unless the actual reading is an outlier in which case you delete it as described above).

The result will appear as in Figure 8-9 and Figure 8-10 respectively.

![Figure 8-9 Display of median after a series of impacts; compressive strength expressed in N/mm²](image3)
![Figure 8-10 Arithmetic mean after a series of impacts; compressive strength expressed in psi](image4)
If you are interested to see additional information tilt the unit and the display as shown in Figure 8-11 will appear.

Figure 8-11 Status after series is completed

8.5 Exiting Averaging Mode
If, after having completed a series, you want to perform a new one, simply make another impact and the SilverSchmidt will start the new series with the counter reset to one.
If you wish to change the parameters for your next series click SELECT, scroll to the SELECTOR icon and click SELECT a second time (Figure 8-12).
Should you want to revert to making single measurements a shortcut symbolized “1 1” is provided (Figure 8-13).

Figure 8-12 Statistics Dialog Window with icons
Figure 8-13 to proceed in Single impact mode centered to return to SELECTOR or...

8.6 REVIEW Mode
The SilverSchmidt features a REVIEW mode that visualizes the last 20 readings. Readings can be single values or averages. To enter the “REVIEW” mode access the SELECTOR, scroll to the middle icon and click SELECT from the SELECTOR.

Figure 8-14 “REVIEW” in center of display
Figure 8-15 Bottom of Review stack
Upon entering the “REVIEW” mode, you will see the last series or individual readings in the middle row of the display as illustrated in Figure 8-15. The most recent value is at the bottom of the stack. Still below is a row containing the list of SELECTOR icons, it allows you to return to the SELECTOR.
To visualize more readings, roll the SilverSchmidt towards you, and the different rows will scroll from bottom to top. Figure 8-16 shows more sections of the result stack.
The SilverSchmidt lets you review the last 20 readings. When you reach the top of the stack, the SELECTOR icons are displayed (Figure 8-16 top). A scroll bar on the right side points to the part of the stack displayed in the window.

1.) The vertical scroll bar on the right side indicates the position of the row in the list.
2.) If you are in Single impact mode, the list will contain individual impacts in Q or R.
3.) To the left is the value of the totalizer at the beginning of each series or single impact.

If you have acquired a series of values applying statistics, the stack will show the averaged value in the unit you have chosen. You can “zoom into” the middle row by pressing the SELECT button and the display will show the values stored and already shown at the completion of that measuring series (Figure 8-17). From here further information about this series can be accessed by tilting the unit as described in section 8.4. Click the SELECT to return to the review stack (Figure 8-16).

To leave the REVIEW mode, either trigger an impact (you’re back in acquisition mode), or scroll to a row of icons and jump back to the SELECTOR.
9 Maintenance

9.1 Function Check
The functional check of your SilverSchmidt is based on two main tests.

Permanent Monitoring of the Impact Energy
The SilverSchmidt measures the impact energy with every impact. If the impact energy is under a defined level an error message is displayed.

In this case the hammer has to be serviced and should be sent back to the service point. This test gives you an immediate warning if the SilverSchmidt isn't working correctly.

Figure 9-1 Impact Energy

Consistency Check
The SilverSchmidt can be checked for proper operation by the aid of a test anvil. If you are already in possession of a corresponding test anvil, perform a measurement series of more than nine impacts with your new and calibrated SilverSchmidt. Note the result for comparison against future consistency checks.

Alternatively a new and precalibrated test anvil can be ordered from Impact. Please contact Impact or your sales contact for further information.

A consistency check should be carried out after every 500 impacts to ensure accurate readings. If the mean value differs by more than +/- 3Q from the initial value, the hammer has to be serviced and should be sent back to the service point.

Because of the new design of the SilverSchmidt, both types N & L behave differently than the Original Schmidt Hammer on some test anvils.

9.2 Cleaning and Maintenance
Your SilverSchmidt unit has been designed to give effective results for several 1'000 impacts. After use, clean the external parts, in particular wipe any dust off the plunger and display window, being careful not to scratch the glass. Be careful when taking off the plunger (to exchange it for a different type) to prevent dirt from entering the unit.
9.3 Hints on How to Obtain Consistent Results

Use the grinding stone to smoothen the test surface. Perform a few test impacts with the concrete test hammer on this smooth, hard surface before taking any measurements which you are going to evaluate.

Perform a consistency check on the test anvil.

Figure 9-2 Preparing the test surface

Ensure all settings are correctly done as described in chapter 7. Each test surface should be tested with at least ten impacts. The individual impact points must be spaced at least 25 mm apart. You may use the template (accessory from Impact) either to mark the impact points on the surface or fix it to the surface and hit the surface within the holes of the

Figure 9-3 Positioning the SilverSchmidt

Position the concrete test hammer perpendicular to and against the test surface (Figure 9-3). Push the concrete test hammer against the test surface at moderate speed until the impact is triggered (see Figure 9-4).

Figure 9-4 Triggering an impact

Warning! The plunger generates a recoil when it deploys. Always hold the concrete test hammer in both hands, perpendicular to the test surface, before you trigger the impact!
10 Alerts and What to do

Figure 10-1 "Low Battery"

Figure 10-2 Alerts

Figure 10-1 Typical Alert: “Low Battery” in the space between the “Q” symbol and the rebound value.

If there is more than one alert, they will alternate

Figure 10-2 Alerts (from left to right):
1 Low battery: Battery will last for approximately another two hours (see also chapter 10.1)
2 Battery full: Is indicated for a few seconds
3 Charging: Is displayed for a few seconds once the USB cable is connected.
4 Unsteady operation: Hold the unit steady and push slowly to avoid excessive motion.
5 Low impact energy: refer to the repair service
6 Optical encoder obstructed: Refer to the repair service
7 Excessive friction: Refer to the repair service

The symbols 1 to 3 referring to the battery are self explanatory.
Symbols 5 to 7 are alerts that help you identify a problem. The alert will be useful when communicating with the repair service (or in trying to repair the unit yourself).
Alerts 4, 5 6, and 7 are indicated after an impact only, thus as shown in Figure 10-1.
Alerts 1, 2 and 3 are shown at any time when appropriate. They will be seen at the same position but alone without any other information on the display.
10.1 Charging the SilverSchmidt

The SilverSchmidt uses a built-in Lithium Polymer accumulator. In case of a low battery alert, you can still record up to 100 impacts. But be sure to recharge the unit after use or prior to the next session. When the display indicates a low battery, connect the SilverSchmidt to the charger or an “active” (not in standby mode) personal computer. The USB link will supply 100 mA, therefore 90 minutes of charging will bring your SilverSchmidt to its full capacity. The SilverSchmidt has a sophisticated charging circuit so you can either recharge at the end of each working day, having reached low battery indication, or once a week as required.

Should your instrument be fully discharged, start with a “RESET” (chapter 5.2) after you have charged it again.

The custom presets are not affected by this “RESET” operation.

Battery Status

For the battery status three alerts can be displayed.

- Low battery (see 1 in Figure 10-2)
- Battery fully charged (see 2 in Figure 10-2)
- Connected power supply (see 3 in Figure 10-2)

In measuring mode these symbols will be displayed at the place for alerts and will start flashing. In all other cases larger symbols will be displayed once for about two seconds on the full display.
11 Technical Data of the SilverSchmidt

11.1 Mechanical Data

<table>
<thead>
<tr>
<th></th>
<th>N-Type</th>
<th>L-Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>Impact energy*</td>
<td>2.207 Nm</td>
<td>0.735 Nm</td>
</tr>
<tr>
<td>Hammer mass</td>
<td>115 g</td>
<td>115 g</td>
</tr>
<tr>
<td>Spring constant*</td>
<td>0.79 N/mm</td>
<td>0.26 N/mm</td>
</tr>
<tr>
<td>Spring extension*</td>
<td>75 mm</td>
<td>75 mm</td>
</tr>
</tbody>
</table>

Dimensions of housing: 55 x 55 x 250 mm (340mm to tip of plunger)
Dimensions (plunger visible part): 105 x ø15 mm / radius of spherical tip 25mm
Weight: 600 gram

11.2 Electrical Data

Display: 17 x 71 pixel; graphic
Power consumption: ~13mA measuring, ~4 mA setup and review, ~0.02 mA idle
Accumulator duty: >1000 impacts (before recharging)
Charger connection: USB type B (5V, 100 mA)
Accumulator capacity: ~150mAh

11.3 Useful Ranges

Operating temperature: 0 to 50 °C
Storage temperature: -10 to 70 °C

(*as in Original Schmidt)
12 Units, Components and Accessories

12.1 Units

<table>
<thead>
<tr>
<th>Type</th>
<th>Code</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>BN</td>
<td>341 10 000</td>
<td>SilverSchmidt BN UNIT consisting of: SilverSchmidt BN, standard accessories (battery charger with USB-cable, data carrier, carrying strap, grinding stone, chalk, documentation) and carrying case</td>
</tr>
<tr>
<td></td>
<td>341 10 001</td>
<td>SilverSchmidt BN consisting of: Housing, electronic and mechanical module</td>
</tr>
<tr>
<td>BL</td>
<td>341 20 000</td>
<td>SilverSchmidt BL UNIT consisting of: SilverSchmidt BL, standard accessories (battery charger with USB-cable, data carrier, carrying strap, grinding stone, chalk, documentation) and carrying case</td>
</tr>
<tr>
<td></td>
<td>341 20 001</td>
<td>SilverSchmidt BL consisting of: Housing, electronic and mechanical module</td>
</tr>
<tr>
<td>UN</td>
<td>341 11 000</td>
<td>SilverSchmidt UN UNIT consisting of: SilverSchmidt UN, Hammerlink software, standard accessories (battery charger with USB-cable, data carrier, carrying strap, grinding stone, chalk, documentation) and carrying case</td>
</tr>
<tr>
<td></td>
<td>341 11 001</td>
<td>SilverSchmidt UN consisting of: Housing, electronic and mechanical module</td>
</tr>
<tr>
<td>UL</td>
<td>341 21 000</td>
<td>SilverSchmidt UL UNIT consisting of: SilverSchmidt UL, Hammerlink software, standard accessories (battery charger with USB-cable, data carrier, carrying strap, grinding stone, chalk, documentation) and carrying case</td>
</tr>
<tr>
<td></td>
<td>341 21 001</td>
<td>SilverSchmidt UL consisting of: Housing, electronic and mechanical module</td>
</tr>
</tbody>
</table>

12.2 Components

Type N and L

<table>
<thead>
<tr>
<th>Code</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>341 10 113</td>
<td>Cover for USB port</td>
</tr>
<tr>
<td>341 10 310</td>
<td>Plunger complete</td>
</tr>
<tr>
<td>341 10 100</td>
<td>Housing</td>
</tr>
<tr>
<td>341 10 200</td>
<td>Electronic module complete</td>
</tr>
<tr>
<td>341 10 202</td>
<td>Battery board, incl. battery</td>
</tr>
<tr>
<td>341 10 300</td>
<td>Mechanical module complete N</td>
</tr>
<tr>
<td>341 20 300</td>
<td>Mechanical module complete L</td>
</tr>
<tr>
<td>341 10 320</td>
<td>Hammer guide bar and guide disc</td>
</tr>
<tr>
<td>341 10 351</td>
<td>Impact spring type N</td>
</tr>
<tr>
<td>341 20 351</td>
<td>Impact spring type L</td>
</tr>
<tr>
<td>341 10 355</td>
<td>Guide sleeve type N, complete</td>
</tr>
<tr>
<td>341 20 355</td>
<td>Guide sleeve type L, complete</td>
</tr>
</tbody>
</table>

12.3 Accessories

<table>
<thead>
<tr>
<th>Code</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>340 10 400</td>
<td>SilverSchmidt Anvil</td>
</tr>
<tr>
<td>341 80 100</td>
<td>Carrying case complete</td>
</tr>
<tr>
<td>351 90 018</td>
<td>USB cable 1.8 m long (6 ft)</td>
</tr>
<tr>
<td>341 80 112</td>
<td>USB Charger, global</td>
</tr>
<tr>
<td>341 80 208</td>
<td>Data carrier with SilverSchmidt documentation</td>
</tr>
<tr>
<td>341 80 203</td>
<td>Carrying strap (loop)</td>
</tr>
<tr>
<td>341 80 205</td>
<td>Grinding stone in plastic box</td>
</tr>
<tr>
<td>325 34 018</td>
<td>Chalk</td>
</tr>
<tr>
<td>341 90 001</td>
<td>Mushroom plunger (for softer material)</td>
</tr>
</tbody>
</table>
13 Appendixes

A Operating Modes

SELECT IMPACT

WHEN ACQUIRING SINGLE DATA "SELECT" GETS YOU TO THE SET-UP VIA THE SELECTOR

WHEN DOING A SERIES OF MEASUREMENTS "SELECT" GETS YOU TO THE "STAT DIALOG WINDOW"

DOING AN IMPACT WILL ACQUIRE THE NEXT SAMPLE, LEAVING THE SETTINGS UNCHANGED

TIPPING ON THE PLUNGER TEMPORARILY DISPLAYS THE SETTINGS

NUMBERS ARE REFERRING TO THE CHAPTERS OF THE OPERATION INSTRUCTIONS

1
2
3
4
5
6
7

8.5

SHORTCUT TO SINGLE IMPACT

RESULT DISPLAY

END OF THE SERIES

SELECT IMPACT

IMPACT

IMPACT

IMPACT

IMPACT

IMPACT

IMPACT

IMPACT

IMPACT

SELECT

IMPACT MODE

IMPACT

SINGLE IMPACT

IMPACT MODE

IMPACT

SINGLE IMPACT

SET UP MODE

SET PARAMETERS

UNITS

CARBONATION

POINTS

STATISTICS

FORM FACTOR

TOTAL SETTINGS (TEMPORARY)

FOR DETAILS SEE MENU STRUCTURE

8.5

TIP

SHORTCUT TO SINGLE IMPACT

RESULT DISPLAY

END OF THE SERIES

SELECT IMPACT

IMPACT

SINGLE IMPACT

IMPACT MODE

IMPACT

SINGLE IMPACT

SELECT IMPACT

SET-UP MODE

SELECT

RESULTS

TABLES

SET PARAMETERS

UNITS

CARBONATION

POINTS

STATISTICS

FORM FACTOR

TOTAL SETTINGS (TEMPORARY)

FOR DETAILS SEE MENU STRUCTURE

39
B Menu Structure

SET-UP MODE

SETTINGS (TEMPORARY)

When tipping on plunger SETTINGS are displayed for about 5 seconds.

PRESETS (PROGRAM)

SCROLL LEFT OR RIGHT

UNIT SELECT

For: Factory setting C1 / C2 / C3
Customer settings

PRESET RECALL

SCROLL LEFT OR RIGHT

STATISTICS (METHOD)

If "1,1" or xASTM has been selected program jumps to SELECTOR
Else number of impacts must be specified

STATISTICS (SELECT n)

SELECT
to program
else timeout ->
settings remain unchanged

SELECT

REVIEW MODE

List contains results of series or single measurements. No detail view is possible (and necessary) on single measurements.

IMPACT MODE

(see Set-up Mode for series)

SELECT

FORM FACTOR SELECT

SELECT

CONVERSION CURVE

SELECT

CARBONATION DEPTH

SELECT

PARAMETERS ARE ONLY CHANGED BY CLICKING WITHIN 5 SECONDS.
OTHERWISE DISPLAY RETURNS TO SELECTOR AND LEAVES PARAMETERS UNCHANGED.
TRIGGERING AN IMPACT LEAVES PARAMETER UNCHANGED.
C Considering Carbonation Depth

Method by Measuring on Carbonated and non-carbonated Concrete

It is possible to obtain accurate values for the effective strength by removing the hard, carbonate-impregnated surface layer using a grinding machine over a surface area of about Ø 120 mm and performing the measurement on the non-carbonated concrete.

The time coefficient, i.e. the amount of reduction due to the increased values Q, can be obtained by taking measurements on the same spot on the carbonate-impregnated surface prior to the grinding (formula for time factor see below).

Time coefficient: $Z_f = \frac{f_{c,n.c.}}{f_{c,arb.}}$

- $f_{c,n.c.}$: Average f_c measured on non-carbonate-impregnated concrete surface
- $f_{c,arb.}$: Average f_c measured on carbonate-impregnated concrete surface

<table>
<thead>
<tr>
<th>Time factor</th>
<th>Carbonation depth</th>
</tr>
</thead>
<tbody>
<tr>
<td>[%]</td>
<td>[mm]</td>
</tr>
<tr>
<td>100</td>
<td>0</td>
</tr>
<tr>
<td>97</td>
<td>0.5</td>
</tr>
<tr>
<td>93</td>
<td>1</td>
</tr>
<tr>
<td>89</td>
<td>1.5</td>
</tr>
<tr>
<td>85</td>
<td>2</td>
</tr>
<tr>
<td>81</td>
<td>2.5</td>
</tr>
<tr>
<td>79</td>
<td>3</td>
</tr>
<tr>
<td>76</td>
<td>3.5</td>
</tr>
<tr>
<td>73</td>
<td>4</td>
</tr>
<tr>
<td>71</td>
<td>4.5</td>
</tr>
<tr>
<td>68</td>
<td>5</td>
</tr>
<tr>
<td>65</td>
<td>5.5</td>
</tr>
<tr>
<td>62</td>
<td>6</td>
</tr>
</tbody>
</table>

Figure C-1 Carbonation depth and time factor

Method based on Standard JGJ/ 23-2001 (China)

Another possibility to account for carbonation is given by the Chinese standard JGJ/T 23-2001. In Table A of the standard JGJ/T 23-2001, compressive strengths for rebound values from 20 to 60 R (in steps of 0.2 R) and for carbonation depths from 0 to 6 mm (in steps of 0.5 mm) are shown. For carbonation depths higher than 6 mm, the values for 6 mm apply (no further changes). The values in the table are based on extensive tests performed on concrete of different places of origin and of different ages. Based on this, Proceq has developed reduction curves as a function of rebound value and carbonation depth. These factors can now be applied. SilverSchmidt calculates with the average reduction function, see Figure C-1.

In case the time factor is known it can be entered by setting the carbonation depth to the corresponding value of Figure C-1 (e.g. for time factor 0.85 the depth must be set to 2 mm).

For concrete without carbonation, like fresh or young concrete, keep the scroll bar to the left to set 0.0 mm carbonation depth.
D Conversion Curves

All curves are only valid for Portland cement types of concrete. For each type the classical curves Proceq-B from the ORIGINAL SCHMIDT hammer are also adapted to the new Q-value.

Caution! When converting to compressive strength DO NOT use any “R”-value and curves that apply to other models of concrete test hammers.

Conversion Curves for Type N
The SilverSchmidt N is provided with four conversion curves. An estimate of the compressive strength is calculated on the basis of these conversion curves.

Proceq L
(only when measured with the mushroom plunger)
Range of compressive strength: 5 to 30 N/mm² (725 to 4'400 psi)

Proceq B
Classical curve from ORIGINAL SCHMIDT adapted to “Q”-value
Range of compressive strength: 10 to 70 N/mm² (1'450 to 10'200 psi)
This curve was established more than 50 years ago and shows rather conservative values. We recommend the use of this curve if you are not certain of the concrete mix.

Proceq C
Range of compressive strength: 10 to 110 N/mm² (1'450 to 16'000 psi)
This curve is valid for Portland cement type of concrete including self compacting concrete.

Proceq H
Range of compressive strength: 70 to 170 N/mm² (1'450 to 24.700 psi)
This curve is valid for Portland cement type of concrete including self compacting concrete.
Please note that the descriptions on the pictures below are examples corresponding to either Type N or L.

Please note that the descriptions on the pictures below are examples corresponding to the Types N or L.
Conversion Curves for Type L

The SilverSchmidt L is provided with two conversion curves

Proceq B
Classical curve from ORIGINAL SCHMIDT adapted to “Q”-value
Range of compressive strength: 18 to 70 N/mm² (2'600 to 10'200 psi)
This curve was established more then 50 years ago and shows rather conservative values.
We recommend the use of this curve if you are not certain of the concrete mix.

Proceq C
Range of compressive strength: 8 to 110 N/mm² (1160 to 16'000 psi)
This curve is valid for Portland cement type of concrete including self compacting concrete.
Conversion “Q”-value to “R”-value

There is a clear relation between the new “Q”-value and the classical “R”-value, thus for the N- and L-type of hammer (see below).
Figure D-4
Quick Reference Guide
This Quick Reference Guide is meant to be a brief operation aid. Careful reading of the operating instructions is mandatory. Reference to chapters is made by framed numbers.

Parts of the SilverSchmidt

Performing the Impact Test

Quick Mode / Reset
Hold the plunger against the surface and apply pressure. You will see the display of [SETTINGS]. At this time push the SELECT button and while pressing it, keep pushing against the surface until the unit triggers. This procedure will cause a RESET of the unit, setting the display to “Q” and resetting all conversion parameters.

Advanced Mode
To program the SilverSchmidt for advanced mode (statistics and conversion to compressive strength) see menu structure (overleaf).

Controlling the SilverSchmidt
Concrete Test Hammer

Controlling the SilverSchmidt with the single button while scrolling through inclination

Performing the Impact Test

Preparing test surface with grinding stone

1. Place the unit perpendicular to the test surface
2. Load the unit by pushing it towards the test surface
3. Impact is triggered at end position

Quick Mode

SET PARAMETERS
- UNITS
- PRESETS
- STATISTICS
- CURVES
- FORM FACTOR

FOR DETAILS SEE MENU STRUCTURE

SET-UP MODE

IMPACT MODE

REVIEW MODE

SHORTCUT TO SINGLE IMPACT

SELECT

START NEXT SERIES

CANCEL LAST READING DECREMENT COUNTER BY 1

SELECT

GETS YOU TO THE SET-UP VIA THE SELECTOR

WHEN DOING A SERIES OF MEASUREMENTS “SELECT” GETS YOU TO THE “STAT DIALOG WINDOW”

TIPPING ON THE PLUNGER TEMPORARILY DISPLAYS THE SETTINGS

NUMBERS ARE REFERRING TO THE CHAPTERS OF THE OPERATION INSTRUCTIONS

Patents pending. Subject to change without notice.

1 SELECT Button
2 USB port
3 LCD display
4 Plunger
5 Guide sleeve (cap)
6 Housing

Controlling the SilverSchmidt

Concrete Test Hammer

For details see menu structure
SET-UP MODE

SETTINGS (TEMPORARY)
When tipping on plunger SETTINGS are displayed for about 5 seconds.

7.2
PRESETS (PROGRAM)

SCROLL LEFT OR RIGHT
5 SELECT

UNIT SELECT
R: Classical "R"-value
Q: True rebound coefficient
Nₐ: N/mm²
Kₐ: kg/cm²
Pₐ: psi

Fo: Factory setting
C₁ / C₂: Customer settings

Preset Recall

SCROLL LEFT OR RIGHT
5 SELECT

PRESET RECALL

SCROLL LEFT OR RIGHT

7.3
STATISTICS (METHOD)
If "1,1" or xASTM has been selected program jumps to SELECTOR
Else number of impacts must be specified

7.3.2
STATISTICS (SELECT n)

SCROLL LEFT OR RIGHT
5 SELECT
to program else timeout -> settings remain unchanged

7.1
UNIT SELECT

SELECT

IMPACT MODE

(see Set-up Mode for series)

SELECT

SELECT

LONG CLICK

IMPACT

SELECT

 CHANGE TO IMPACT MODE WITH CURRENT SETTINGS

SELECT

PARAMETERS ARE ONLY CHANGED BY CLICKING SELECT WITHIN 5 SECONDS. OTHERWISE DISPLAY RETURNS TO SELECTOR AND LEAVES PARAMETERS UNCHANGED.

TRIGGERING AN IMPACT LEAVES PARAMETER UNCHANGED.

REVIEW MODE

List contains results of series or single measurements. No detail view is possible (and necessary) on single measurements.

SELECT

SHOWS DETAILS OF SERIES IN THE ROW IN THE MIDDLE.

IMPACT

SELECT

FORM FACTOR SELECT

SELECT

CONVERSION CURVE

SELECT

7.6
CARBONATION DEPTH

SELECT

5

PARAMETERS ARE ONLY CHANGED BY CLICKING SELECT WITHIN 5 SECONDS. OTHERWISE DISPLAY RETURNS TO SELECTOR AND LEAVES PARAMETERS UNCHANGED.

TRIGGERING AN IMPACT LEAVES PARAMETER UNCHANGED.