Speedy Moisture Testers
AG025 & AG027

Impact Test Equipment Ltd
www.impact-test.co.uk & www.impact-test.com
Impact Test Equipment Ltd.
Building 21 Stevenston Ind. Est.
Stevenston
Ayrshire
KA20 3LR

T: 01294 602626
F: 01294 461168

E: sales@impact-test.co.uk

Test Equipment Web Site
www.impact-test.co.uk

Test Sieves & Accessories Web Site
www.impact-test.com
Introduction and Product Familiarisation

The Series 2000 Speedy moisture tester is a portable system for measuring the moisture content of a wide range of materials including soils, aggregates, dust and powders (and liquids). The system consists of a rugged plastic case containing a low-pressure vessel fitted with a pressure gauge and an electronic scale and ancillaries.

Moisture measurements are made by mixing a weighed sample of the material with a reagent – calcium carbide – in the sealed pressure vessel. The reagent reacts chemically with water in the sample producing acetylene gas that in turn increases the pressure within the vessel. As the pressure increase in the vessel is proportional to the amount of water in the sample, the moisture content can be read directly from the calibrated pressure gauge.

The Series 2000 Speedy is available in two sizes with a choice of moisture measurement ranges as detailed below.

<table>
<thead>
<tr>
<th>Part No.</th>
<th>Vessel Size</th>
<th>Measurement Range $H_2O%W/W$</th>
<th>Max. Recommended Particle Size</th>
<th>Sample Weight (g)</th>
</tr>
</thead>
<tbody>
<tr>
<td>L2000C</td>
<td>Large</td>
<td>0 – 10</td>
<td>20mm</td>
<td>40g</td>
</tr>
<tr>
<td>L2000D</td>
<td>Large</td>
<td>0 – 20</td>
<td>20mm</td>
<td>20g</td>
</tr>
<tr>
<td>L2000G</td>
<td>Large</td>
<td>0 – 60</td>
<td>20mm</td>
<td>8g</td>
</tr>
<tr>
<td>S2000B</td>
<td>Standard</td>
<td>0 – 5</td>
<td>10mm</td>
<td>11g</td>
</tr>
<tr>
<td>S2000C</td>
<td>Standard</td>
<td>0 – 10</td>
<td>10mm</td>
<td>12g</td>
</tr>
<tr>
<td>S2000D</td>
<td>Standard</td>
<td>0 – 20</td>
<td>10mm</td>
<td>6g</td>
</tr>
</tbody>
</table>
Safety First
The calcium carbide reagent used with the Speedy tester is a hazardous product that must be handled with care by the user and with consideration for the environment. Users of the Speedy must be familiar with the Speedy Moisture Test Procedure detailed in this manual.

Users must also follow calcium carbide transportation, storage, handling and disposal guidelines in accordance with local regulations and/or the calcium carbide Material Safety Data Sheet (MSDS). Users should be familiar with the hazard identification, first aid measures, fire-fighting measures, accidental release measures, personal protection measures, physical and chemical properties, stability and reactivity, toxicological information, and ecological information as given in the MSDS.

Standard Size Speedy – Moisture Test Procedure

The test procedure is simple to follow and takes a just few minutes for most materials. To ensure accurate and consistent results the procedure should be followed precisely.

1. **Clean the Speedy Vessel.** Prior to using the speedy tester ensure that the inside of the Speedy cap and vessel are empty and clean. Use the bristle brush to remove any residues from previous tests.

2. **Select and prepare the sample.** Ensure that the sample to be weighed and placed in the Speedy is representative of the material that is under investigation. Some materials, such as free-flowing powders and sands, need no preparation whereas others may need to be ground prior to testing – please refer to the Sample Preparation Table for further information.

3. **Weigh the sample.** Place the empty measuring beaker on the electronic scale and zero the scale (refer to the electronic balance user instructions for further details). Add small amounts of material from the sample until the correct sample weight is reached. The sample weight is determined by the size and measurement range of the Speedy that is being used as detailed below:

<table>
<thead>
<tr>
<th>Part No.</th>
<th>Vessel Size</th>
<th>Measurement Range</th>
<th>Sample Weight (g)</th>
</tr>
</thead>
<tbody>
<tr>
<td>S2000B</td>
<td>Standard</td>
<td>0 – 5</td>
<td>11g</td>
</tr>
<tr>
<td>S2000C</td>
<td>Standard</td>
<td>0 – 10</td>
<td>12g</td>
</tr>
<tr>
<td>S2000D</td>
<td>Standard</td>
<td>0 – 20</td>
<td>6g</td>
</tr>
</tbody>
</table>
4. **Add the sample to the Speedy vessel.** Pour the sample into the chamber of the Speedy vessel as shown.

5. **Add the reagent to the Speedy cap.** Using the metal scoop, add a minimum of two full scoops of reagent to the Speedy cap cavity as shown.

6. **Seal the Speedy.** Hold the Speedy horizontally and position the cap as shown. Swing the stirrup into position and tighten the top screw to seal.

7. **Mix the sample with the reagent.** Hold the Speedy vertically with the pressure gauge facing the ground and shake vigorously for 5 seconds. Rotate the Speedy through 180° so that the pressure gauge faces the sky, tap the sides of the Speedy to ensure the sample falls into the cap cavity and prop or hold the Speedy in this position for 1 – 2 minutes.

8. **Take the reading.** Hold the Speedy horizontally and at eye level and take the moisture content reading directly from the pressure gauge.

9. **Release the pressure.** Hold the Speedy vertically with the pressure gauge facing the ground. Locate the arrow on the flange of the cap and point this away from yourself and other people in your vicinity. Unscrew the top screw slowly to vent the gas that may have been generated within the Speedy.

10. **Remove the sample and reagent.** Tip the contents of the Speedy directly into a clean and dry open container and dispose of in accordance with **Section 13** of the Calcium Carbide **Material Safety Data Sheet**.

11. **Clean the Speedy.** Clean the Speedy vessel and cap and measuring beaker in preparation for the next moisture measurement.
Large Size Speedy – Moisture Test Procedure

The test procedure is simple to follow and takes just a few minutes for most materials. To ensure accurate and consistent results, the procedure should be followed precisely.

1. **Clean the Speedy Vessel.** Prior to using the speedy tester, ensure that the inside of the Speedy cap and vessel are empty and clean. Use the bristle brush to remove any residues from previous tests as shown.

2. **Select and prepare the sample.** Ensure that the sample to be weighed and placed in the Speedy is representative of the material that is under investigation. Some materials, such as free-flowing powders and sands, need no preparation whereas others may need to be ground prior to testing or pulverised during the test. Please refer to the Sample Preparation Table for further information.

3. **Weigh the sample.** Place the empty measuring beaker on the electronic scale and zero the scale. Refer to the electronic balance user instructions for further details. Add small amounts of material from the sample until the correct sample weight is reached. The sample weight is determined by the size and measurement range of the Speedy that is being used as detailed below:

<table>
<thead>
<tr>
<th>Part No.</th>
<th>Vessel Size</th>
<th>Measurement Range H₂O%W/W</th>
<th>Sample weight (g)</th>
</tr>
</thead>
<tbody>
<tr>
<td>L2000C</td>
<td>Large</td>
<td>0 – 10</td>
<td>40g</td>
</tr>
<tr>
<td>L2000D</td>
<td>Large</td>
<td>0 – 20</td>
<td>20g</td>
</tr>
<tr>
<td>L2000G</td>
<td>Large</td>
<td>0 – 50</td>
<td>8g</td>
</tr>
</tbody>
</table>

4. **Add the sample to the Speedy vessel.** Pour the sample into the chamber of the Speedy vessel as shown. Place pulverising balls into the chamber if required – refer to Sample Preparation Table.

5. **Add the reagent to the Speedy cap.** Using the metal scoop, add a minimum of two full scoops of reagent to the Speedy cap cavity as shown.
6. **Seal the Speedy.** Hold the Speedy horizontally and position the cap as shown. Swing the stirrup into position and tighten the top screw to seal.

Mix the sample with the reagent. Hold the Speedy vertically with the pressure gauge facing the ground and shake vigorously for 5 seconds. Rotate the Speedy through 180° so that the pressure gauge faces the sky, tap the sides of the Speedy to ensure the sample falls into the cap cavity and prop or hold the Speedy in this position for 1 – 2 minutes.

Alternatively, if the pulverising balls are being used, hold the Speedy horizontally and shake it in an orbital motion to make the balls spin around the inside of the Speedy vessel. Do this for 20 seconds and then rest for 20 seconds. Repeat this process two or three times. The spinning balls pulverise the sample to give a more reliable measurement.

7. **Take the reading.** Hold the Speedy horizontally and at eye level and take the moisture content reading directly from the pressure gauge.

8. **Release the pressure.** Hold the Speedy vertically with the pressure gauge facing the ground. Locate the arrow on the flange of the cap and point this away from yourself and other people in your vicinity. Unscrew the top screw slowly to vent the gas that may have been generated within the Speedy.

9. **Remove the sample and reagent.** Tip the contents of the Speedy directly into a clean and dry open container and dispose of in accordance with Section 13 of the Calcium Carbide Material Safety Data Sheet.

10. **Clean the Speedy.** Clean the Speedy vessel and cap and measuring beaker in preparation for the next moisture measurement.
User Guidance Notes

Proportional Test Technique
If the moisture content of the material exceeds the measurement range of the Speedy being used then the Proportional Test Technique may be used to obtain measurements. This involves halving the normal sample weight and doubling the gauge value. For example:

Assume a L2000D Speedy with a measurement range of 0 – 20 H₂O%W/W is being used to test soil with a nominal moisture content of 30%. The sample is prepared as required and half the normal weight – 10g – is weighed and placed in the Speedy. The test procedure is followed and a gauge value of 14.7% is recorded. This value is then doubled to give the actual moisture content of 29.4%.

The proportional test may also be used to obtain clearer readings in very dry material by doubling the sample size and halving the gauge value.

Temperature
For optimum performance the Speedy tester and sample should be at 20°C (68°F) when used. If this is not practical, take at least three tests in quick succession to equilibrate temperatures as far as possible. Ignore the first and second test results and record the later results.

Correction Factors
When compared with oven test results, Speedy readings may be low if the material under investigation contains volatile components other than water as these may evaporate with the water at elevated temperatures. Correction factors for given materials can be established by plotting graphs of Speedy test results against oven test results.

Measuring Liquids
Speedy testers may be used to measure the moisture content of certain liquids (most commonly oils) by adapting the test procedure as follows:

1. Weigh the liquid sample as normal
2. Place the liquid in a clean mixing vessel and add two to four scoops of dry sand. Mix thoroughly and place the mixture in the Speedy vessel.
3. Continue with the test as detailed in the Moisture Test Procedure.
Wet Weight to Dry Weight Conversion

The pressure gauges used with the Series 2000 Speedy testers are calibrated to give the moisture content expressed as a percentage of the sample’s wet weight. If required, the measured value (M_{WW}) can be expressed as a percentage of the sample’s dry weight (M_{DW}) by using the following formula:

$$M_{DW} = \frac{100 \times M_{WW}}{100 - M_{WW}}$$

Fault Diagnosis

Suspect Low Reading

If gauge readings are lower than you expect or anticipate check the following:

1. Test procedure has not been followed correctly. Ensure correct sample weight is used. Ensure sample is placed in the Speedy vessel and reagent is placed in the Speedy cap. Ensure Speedy vessel and cap are united and sealed in the horizontal plane to prevent premature contact of reagent and sample.
2. Inadequate cleaning of Speedy vessel and cap between tests. Ensure all residues from previous tests have been removed from the cap and vessel before starting a new test.
3. Insufficient reagent. Repeat the test using an additional scoop of reagent.
4. Ineffective reagent. Ensure that the reagent is fresh. Note that the colour of fresh reagent is dark grey; ineffective reagent (that has been exposed to moisture in the air or other sources) will have turned light grey in colour.
5. Inadequate sample preparation or sample-reagent mixing. Consider grinding the sample prior to weighing and/or (for Large Speedy only) using pulverising balls.
6. Temperature effects. Low readings may be recorded if the Speedy is used in very low temperatures. Take numerous readings in quick succession to raise the operating temperature of the Speedy.
7. Pressure loss. Visually check the cap washer for signs of holes or leak paths. Remove pressure gauge and visually check pressure gauge washer. Visually check Speedy vessel and cap for hairline cracks.
8. Defective pressure gauge. Does the needle sweep smoothly across the scale plate? If not, replace the gauge, or return the Speedy tester to an authorised distributor for service.
Suspect High Reading

If gauge readings are higher than you expect or anticipate check the following:

1. Ensure correct sample weight is used.
2. Ensure Speedy is held in the horizontal plane at eye level when reading the pressure gauge.
3. Temperature effects. High readings may be recorded if the Speedy is used in very high temperatures. If the Speedy is warm/hot to touch as a result of taking many readings in quick succession, allow time for it to cool down before taking more tests.
4. Defective pressure gauge. Does the needle return to zero after releasing pressure from the Speedy? If not, replace the gauge, or return the Speedy tester to an authorised distributor for service.

Recommended Spares and Consumables

It may be wise to consider having the following spares and consumables to hand when using the Speedy tester, especially in remote locations:

- Batteries for the electronic scale, 3-off AA/LR6 1.5V
- Speedy cap washer
- Pressure gauge washer
- Pressure gauge (note the measurement range)
- Cleaning brushes

Other spares parts for the Speedy vessel are available on request.

Sample Preparation Table

<table>
<thead>
<tr>
<th>Material Type</th>
<th>Recommended Preparation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aggregate</td>
<td>Check maximum sample size; crush if larger than maximum recommended particle size</td>
</tr>
<tr>
<td>Dust</td>
<td>None required</td>
</tr>
<tr>
<td>Liquids</td>
<td>Mix with dry sand – see User Guidance Notes</td>
</tr>
<tr>
<td>Powders</td>
<td>None required</td>
</tr>
<tr>
<td>Sand</td>
<td>None required</td>
</tr>
<tr>
<td>Soils</td>
<td>Grind with mortar and pestle prior to testing, or use pulverising balls. Refer to Large Size Speedy – Moisture Test Procedure</td>
</tr>
</tbody>
</table>

The information contained in this booklet is given in good faith. As the method of use of the instrument (and its accessories) and the interpretation of the readings are beyond the control of the manufacturers, they cannot accept responsibility for any loss, consequential or otherwise, resulting from its use.
Material Safety Data Sheet

Impact Test Equipment Ltd
www.impact-test.co.uk & www.impact-test.com
1.1 IDENTIFICATION OF THE PRODUCT
Name: Calcium carbide
CAS-No.: 75-20-7
UN-No.: 1402
EINECS-No.: 200-848-3
EU - No.: 006-004-00-9

1.2 IDENTIFICATION OF THE MANUFACTURER / SUPPLIER
Name: Carbide Industries Limited
Address: Althorpe Wharf, Keadby, Scunthorpe
UNITED KINGDOM, DN17 3DA
Telephone: +44 1724 782383

1.3 EMERGENCY TELEPHONE
Telephone: NCEC + 44 1865 407333

2. COMPOSITION
<table>
<thead>
<tr>
<th>CAS-No.</th>
<th>CHEMICAL NAME</th>
<th>CONC. (WEIGHT-%)</th>
<th>HAZARD CLASSIFICATION</th>
</tr>
</thead>
<tbody>
<tr>
<td>75-20-7</td>
<td>Calcium carbide</td>
<td>~80</td>
<td>F - Highly flammable</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>R -15: Contact with water liberates highly flammable gas.</td>
</tr>
<tr>
<td>1305-78-8</td>
<td>Calcium oxide</td>
<td>~15</td>
<td>C - Corrosive</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>R -34: Causes burns.</td>
</tr>
</tbody>
</table>

3. HAZARD IDENTIFICATION
Reacts with water to form Ca(OH)$_2$ and flammable acetylene, which forms explosive mixture with air. By contact with water (humidity), acetylene gas with anaesthetic effect is liberated. Simultaneously, very small amounts of poisonous phosphine and hydrogen sulphide gas are set free.
Residue contains Calcium hydroxide which may cause burns.

4. FIRST AID MEASURES
Acute poisoning due to handling of calcium carbide is unlikely to occur if usual safety precautions are taken.

Skin: Remove contaminated clothes immediately. Flush exposed skin abundantly with clean water and cover with sterile compress (do not use compress for burns).

Eyes: Flush abundantly with clean water for at least 15 minutes forcing the eye-lids open.

Inhalation: By poisoning caused by inhalation of phosphine (and arsine) gas from moist calcium carbide: remove the victim from the source of exposure as quickly as possible. Usual first aid: rest, warmth, fresh air.

By unconsciousness: Loosen tight-fitting clothes, place the body in a stable, lateral position.

By breathing difficulties: Give oxygen.

By breathing arrest: Artificial respiration.

By heart arrest: External heart compression.

Immediate transport to hospital preferably under administration of oxygen.

Ingestion: Not relevant.

5. FIRE-FIGHTING MEASURES
Dry calcium carbide is not inflammable. Contact with humidity and water liberates acetylene gas which is highly inflammable and can form explosive mixtures with air. The gas is lighter than air.

Fire extinction: Small fires: Dry powder, lime or dry sand.
Large fires: Withdraw from area and let fire burn.

Do not use: Water or foam.

Protective measures: If staying in atmosphere containing acetylene is unavoidable, be aware of the high risk of explosion and wear self-containing breathing equipment.
6. **ACCIDENTAL RELEASE MEASURES**

Be aware of the possibility of acetylene gas formation on contact with humid atmospheres or water.

- Shut off ignition sources.
- Stay upwind.
- Keep people and animals away from the polluted area.
- Removal: Collect material in suitable containers which must not be tightly closed. Protect the spilled material from contact with water and do not allow it to enter water courses.

Water contamination: Calcium Carbide should not be let into the sea, lakes, rivers etc. By the reaction with water alkaline calcium hydroxide is formed which is harmful to fish and marine organisms. Observe possible national/international pollution regulations.

Contamination of streets and the environments: Proceed as described previously. Evacuate the polluted area. Material remaining after collection must not be dumped into the public sewer.

In case of spillage affecting the environment, consult the authorities (pollution agency etc.) according to local regulations and rules. By serious accidents, inform the authorities concerned.

See also Sections 8, 12 and 13

7.1 **HANDLING**

- Keep tightly closed in a dry and cool place. Handle and open container with care.
- Use spark proof tools.
- Protect against humid air and water.
- Keep away from sources of ignition.
- No smoking.

7.2 **STORAGE**

- Calcium carbide must be stored in tightly closed containers in a dry, well ventilated place without sprinkler protection.
- Exclude possible sources of ignition of acetylene gas.
- Even traces of humidity will cause liberation of explosive acetylene gas.
- It should be stored separately from silver, mercury, copper and copper alloys.

8. **EXPOSURE CONTROLS / PERSONAL PROTECTION**

The working operation should be arranged in such a way that formation of dust is reduced to a minimum. Avoid moisture. Provide good ventilation.

Respiratory protection: For working operations involving dust formation, use approved dust mask (P2). In case of possible presence of phosphine-, (arsine-) and hydrogen sulphide gas: use combination filter or preferably fresh air mask until control measurements are done.

Hand Protection: Rubber gloves

Eye protection: Safety goggles, eye flushing facilities

<table>
<thead>
<tr>
<th>Occupational Exposure Standards</th>
<th>Long-term Exposure (8 hour TWA reference period) ppm (mg/m³)</th>
<th>Short-term Exposure Limit (15 minute reference period) ppm (mg/m³)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>UK¹</td>
<td>USA²</td>
</tr>
<tr>
<td>Calcium carbide</td>
<td>Not stated</td>
<td>Simple asphyxiants</td>
</tr>
<tr>
<td>Acetylene-gas (C₂H₂)</td>
<td>0.3 (0.4)</td>
<td>0.3 (0.42)</td>
</tr>
<tr>
<td>Phosphine-gas (PH₃)</td>
<td>0.05 (0.2)</td>
<td>0.05 (0.16)</td>
</tr>
<tr>
<td>Arsine-gas (AsH₃)</td>
<td>10 (14)</td>
<td>10 (14)</td>
</tr>
<tr>
<td>Hydrogen sulphide-gas (H₂S)</td>
<td>25 (18)</td>
<td>25 (17)</td>
</tr>
<tr>
<td>Ammonia (NH₃)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Calcium hydroxide (Ca(OH)₂)</td>
<td>- (5)</td>
<td></td>
</tr>
</tbody>
</table>
9. PHYSICAL AND CHEMICAL PROPERTIES

<table>
<thead>
<tr>
<th>Property</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Appearance</td>
<td>Lump-formed or granular, dark grey material</td>
</tr>
<tr>
<td>Smell</td>
<td>Onion-like, due to presence of phosphine or arsine as impurities.</td>
</tr>
<tr>
<td>Calcium Carbide:</td>
<td></td>
</tr>
<tr>
<td>Relative density</td>
<td>2.3 g/cm³</td>
</tr>
<tr>
<td>Bulk density</td>
<td>~1100 kg/m³</td>
</tr>
<tr>
<td>Boiling point</td>
<td>NA</td>
</tr>
<tr>
<td>Melting point</td>
<td>1700 - 1950°C</td>
</tr>
<tr>
<td>Flash point</td>
<td>Does not flash if dry</td>
</tr>
<tr>
<td>pH - value</td>
<td>NA</td>
</tr>
<tr>
<td>Vapour pressure (20°C)</td>
<td><<1 mbar (in dry air)</td>
</tr>
<tr>
<td>Solubility (water)</td>
<td>Reacts heavily</td>
</tr>
<tr>
<td>Acetylene:</td>
<td></td>
</tr>
<tr>
<td>Explosion limit in air</td>
<td>1.5 – 82%</td>
</tr>
<tr>
<td>Ignition temperature</td>
<td>305°C</td>
</tr>
<tr>
<td>Specific gravity (air =1)</td>
<td>0.91</td>
</tr>
</tbody>
</table>

10. STABILITY AND REACTIVITY

Calcium carbide reacts violently with water with the liberation of flammable acetylene gas and the formation of corrosive calcium hydroxide solution. Small amounts of phosphine, arsine, hydrogen sulphide and ammonia are also released. Even very small amounts of water will react with calcium carbide developing sufficient heat to make the acetylene gas ignite spontaneously. Acetylene will react with copper, silver and mercury creating explosive compounds (acetylides which are shock and temperature sensitive.

11. TOXICOLOGICAL INFORMATION

Handling of dust - free, lumped-formed Calcium Carbide is not considered to be a health risk when safety precautions are taken.

Skin: Dust may irritate moist skin and can cause skin ulceration and eczema.

Eyes: Dust may damage the cornea and can in serious cases cause blindness.

Inhalation: Symptoms of acute poisoning are : nausea, vomiting, disorientation, burning sensation in the nose or throat and breathing difficulties.

12. ECOLOGICAL INFORMATION:

The decomposition products of calcium carbide, acetylene and calcium hydroxide are harmful to fish.

Acetylene: 200 mg/l lethal for trout fry
300 mg/l lethal for gold fish within 24 -48 hrs.

Ca(OH)₂: 20 mg/l harmful to fish.
70 mg/l lethal after 26 minutes

13. DISPOSAL CONSIDERATIONS

Small amounts of Calcium Carbide are collected and mixed with diatomaceous earth at a safe place in the open air. Add small portions of water in a suitable, open container. Ignite the acetylene gas with a pilot flame. Let burn out, and stay for 24 hours. Decant the fluid part and transfer the solid precipitate to an approved site for deposition or burial.

Equipment etc. can be cleaned with water. Observe the possibility of acetylene gas formation and use protective equipment.
14. **TRANSPORT INFORMATION.**

Calcium Carbide must only be packed and transported in packing according to international transport regulations. The packing must be strong and tightly closed to prevent access of humidity to the material.

<table>
<thead>
<tr>
<th>UN No.</th>
<th>1402</th>
</tr>
</thead>
<tbody>
<tr>
<td>Air Transport (ICAO-TI/IATA-DGR)</td>
<td>Class 4.3, P.G. II, P/A: 416/15 Kg CAO: 418/50 Kg</td>
</tr>
<tr>
<td>Road Transport (ADR)</td>
<td>Class 4.3, Item 17(b) Kemlercode: 423/1402</td>
</tr>
<tr>
<td>Rail Transport (RID)</td>
<td>Class 4.3, Item 17(b) Kemlercode: 423/1402</td>
</tr>
<tr>
<td>CEFIC - Card</td>
<td>(R) - 192</td>
</tr>
</tbody>
</table>

For further information about the different transport classes, consult national / international transport authorities.

15. **REGULATORY INFORMATION**

According to EU-Dir. 67/548, as amended, the product is labelled as follows:

- **F** - Highly flammable
- **R 15** Contact with water liberates highly flammable gases
- **S 8** Keep container dry
- **S 43** In case of fire, use dry sand (i.e.) dry powder. Never use water.

16. **OTHER INFORMATION**

The information given here is based on the present state of our knowledge and describes our product under the aspect of safety. It should not therefore be construed as guaranteeing specific properties.

1 Environmental Health Series No. 40 (EH 40), The Health and Safety Executive. Occupational Exposure Limits 1984.
2 Threshold Limit Values 1992 - 1993, American Conference of Governmental Industrial Hygienists (ACGIH).